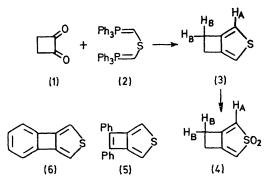
3-Thiabicyclo[3,2,0]hepta-1,4-diene

By P. J. GARRATT* and D. N. NICOLAIDES

(Chemistry Department, University College London, 20 Gordon Street, London WC1H OAJ)


Summary 3-Thiabicyclo[3,2,0]hepta-1,4-diene (3) has been synthesised by a Wittig reaction between cyclobutane1,2-dione (1) and the bis-ylide (2). Oxidation of (3) gave the corresponding sulphone (4).

3-THIABICYCLO[3,2,0]HEPTA-1,4-DIENE (4,5-dihydrocyclobuta[c]thiophen) (3) is a molecule of considerable current interest for which an unusual chemistry has been predicted.¹ Compound (3) also provides a model system with which to compare the properties of thienocyclobutadienes [e.g. (5)]and related systems.² Recently four highly halogenated derivatives of (3) were reported,³ but the degree of substitution precluded the observation of much spectroscopic data. We now report the synthesis of the parent system (3).

Reaction of cyclobutane-1,2-dione⁴ with the bis-ylide (2). prepared from thiodimethylenebis(triphenylphosphonium) dichloride,⁵ in ether at -65° under nitrogen gave ca. 5% of (3) as a colourless liquid, $\dagger \ddagger \tau$ (CDCl₃) 3.24 (s, H_A) and 6.98 (s, H_B) (ratio 1:2), λ_{max} (EtOH) 244 nm (ϵ 7800). Oxidation of (3) with H_2O_2 in acetic acid gave 65% of the sulphone (4), m.p. $127.5-128.5^{\circ}, \ddagger \tau$ (CDCl₃) 3.98 (s, H_A) and 6.67 (s, H_B) (ratio 1:2), λ_{max} 225 (ϵ 3300) and 292 nm (1300), the electronic spectrum being characteristic of a thiophen dioxide. 3-Thiabicyclo[3,2,0]hepta-1,4-diene readily adds bromine to give a tetrabromide, and this and other aspects of its chemistry are under investigation.

The chemical shift (τ 3.24) of H_A in (3) is that expected for a proton on a 3,4-dialkyl-substituted thiophen,⁵ and differs significantly from the chemical shifts of the corresponding protons in 6,7-diphenyl-3-thiabicyclo[3,2,0]heptatriene (5) (τ 3.84) and 2-thianorbiphenylene (6) (τ 3.51).² On oxidation of (3) to the sulphone (4), the H_A signal

experiences an upfield shift (0.74 p.p.m.) similar to that observed on oxidation of 3,4-dimethylthiophen to its sulphone (0.54 p.p.m.),⁷ but in marked contrast to the shift observed (0.09 p.p.m.) when (6) is oxidised to its corresponding sulphone.² These differences can be explained if

it is assumed that compounds (5) and (6) have paramagnetic contributions to the ring current arising from the fourmembered ring, as previously suggested,² whereas (3)does not.

We thank the North Atlantic Treaty Organisation for a Fellowship (to D.N.N.).

(Received, 6th July 1972; Com. 1178.)

 \dagger Compound (3) was isolated by a combination of column chromatography (Al₂O₃), distillation, and g.l.c.

‡ Satisfactory high resolution mass spectra and microanalytical results were obtained.

¹ H. Wynberg, Accounts Chem. Res., 1971, 4, 65.

² P. J. Garratt and K. P. C. Vollhardt, Chem. Comm., 1970, 109; J. Amer. Chem. Soc., 1972, 94, 1022.
³ S. W. Longworth and J. F. W. McOmie, J.C.S. Chem. Comm., 1972, 623.
⁴ J. M. Conia and J. M. Denis, Tetrahedron Letters, 1971, 2845.

⁵ K. Dimroth, H. Follmann, and G. Pohl, Chem. Ber., 1966, 99, 642.

⁶ See L. M. Jackman and S. Sternhell, 'Applications of Nuclear Magnetic Resonance in Organic Chemistry,' Pergamon, Oxford, 1969 p. 214.

⁷ S. B. Neoh, unpublished results.